سلول خورشیدی، یک قطعه الکترونیکی است که به کمک اثر فوتوولتاییک انرژی نورخورشید را مستقیماً به الکتریسیته تبدیل میکند.
سلولهای خورشیدی ساخته شده از ویفرهای سیلیکونی ، کاربرد بسیاری دارند. سلولهای خورشیدی به تنهایی، برای فراهم کردن توان لازم دستگاههای کوچک، مانند ماشین حساب الکترونیکی کاربرد دارد. آرایههای فوتوولتاییک، الکتریسیته پایدار و تجدید پذیری را تولید میکنند که عمدتاً در موارد عدم وجود شبکه انتقال و توضیع الکتریکی کاربرد دارد. برای مثال میتوان به محلهای دور از دسترس، مانند کاوشگرهای فضایی و ساختمانهای مخابراتی دور از دسترس اشاره کرد. علاوه بر این استفاده از این نوع انرژی امروزه در محلهایی که شبکه توزیع هم موجود است، به منظور کمک به کم کردن تکیه و فشار بر سوخت های فسیلی و دیگر دشواریهای محیط زیست و از دیدگاه افتصادی مرسوم شده و در حال گسترش است.
امروزه انسان با پیشرفتهایی که در زمینههای مختلف کردهاست، نیازی روزافزون به انرژی پیدا کرده و ازاین رو در پی تأمین انرژی مورد نیاز از منابع مختلف تجدید پذیر است.
یکی از این منابع که طی ۲۰ سال اخیر، از آن استفاده میشود، انرژی خورشیدی است. خورشید در هر ثانیه حدود ۱۰۰۰ ژول انرژی به هر مترمربع از سطح زمین منتقل میکند که با جمعآوری کردن آن میتوان انرژی مورد نیاز برای کارهای مختلفی را تأمین کرد. سلول خورشیدی انواع مختلفی دارد.
انرژی مورد نیاز بشر و انرژی خورشید
انرژی که از طریق خورشید به زمین میرسد ۱۰۰۰۰ بار بیشتر از انرژی مورد نیاز انسان است. مصرف انرژی در سال ۲۰۵۰ یعنی سال ۱۴۲۹ شمسی، ۵۰ تا ۳۰۰ درصد بیشتر از مصرف امروزی آن خواهد بود. با اینحال اگر فقط 1/0 درصد از سطح زمین با مبدلهای انرژی خورشیدی پوشیده شوند و تنها ۱۰ ٪ بازده داشته باشند برای تأمین انرژی مورد نیاز بشر کافی است.
در مرکز خورشید هر ثانیه ۷۰۰ تن هیدروژن به انرژی تبدیل میشود. انرژی تولید شده در سطح خورشید بعد از ۸ دقیقه به سطح زمین میرسد. نور خورشید که به زمین میرسد شامل طول موج های زیر است: ۴۷ درصد فروسرخ۴۶ درصد نورمرئی، ۷ درصد فرابنفش. از این رو سلولهای خورشیدی باید در ناحیه فروسرخ و نورمرئی جذب بالایی داشته باشند.
ساختار سلول خورشیدی
ناسا از همان ابتدا از سلولهای خورشیدی در ماهوارههای خود استفاده کرد. ماهواره Explorer 6 که در ۱۹۵۹ به فضا پرتاب شد، دارای ۴ آرایه از سلولههای خورشیدی تاشونده بود که انرژی مورد نیازماهواره را برای ماهها تأمین میکرد.
سلول های خورشیدی معمولاً از مواد نیمه رسانا، مخصوصاً سیلیسیوم، تشکیل شدهاست. هر اتم سیلیسیم با چهار اتم دیگر پیوند تشکیل میدهد و بدین صورت، شکل کریستالی آن پدید میآید.
در سلول های خورشیدی به سیلیسیوم مقداری جزئی ناخالصی اضافه میکنند. اگر اتم ناخالصی ۵ ظرفیتی باشد (اتم سیلیسیم ۴ ظرفیتی است)، آنگاه در ارتباط با چهار اتم سیلیسیم یک لایه آن بدون پیوند باقی میماند.
درصورتی که اتم ناخالصی دارای ظرفیت ۳ باشد، آنگاه یک حفره اضافی ایجاد میشود. حفره را به گونهای میتوان گفت که جای خالی الکترون است، با بار مثبت (به اندازه الکترون) و جرمی برابر با جرم الکترون؛ که این امر هم باعث مثبت شدن نسبی ماده میشود. هر باتری خورشیدی از ۶ لایه تشکیل شده که هر لایه را مادهای خاص تشکیل میدهد.
عملکرد سلول خورشیدی (اثر فوتوولتائیک)
با اتصال یک نیمه هادی نوع p به یک نیمه هادی نوعn، الکترونها از ناحیه n به ناحیه p و حفره ها از ناحیه p به ناحیه n منتقل میشوند. با انتقال هر الکترون به ناحیهp، یک یون مثبت در ناحیه n و با انتقال هر حفره به ناحیهn، یک یون منفی در ناحیه p باقی میماند. یونهای مثبت و منفی میدان الکتریکی داخلی ایجاد میکنند که جهت آن از ناحیه n به ناحیه p است. این میدان با انتقال بیشتر باربرها (الکترونها و حفرهها)، قویتر و قویتر شده تا جایی که انتقال خالص باربرها به صفر میرسد. در این شرایط تراز های فرمی دو ناحیه با یکدیگر هم سطح شدهاند و یک میدان الکتریکی داخلی نیز شکل گرفتهاست.
اگر در چنین شرایطی، نور خورشید به پیوند بتابد، فوتون هایی که انرژی آنها از انرژی شکاف نیمه هادی بیشتر است، زوج الکترون حفره تولید کرده و زوجهایی که در ناحیه تهی یا حوالی آن تولید شدهاند، شانس زیادی دارند که قبل از بازترکیب، توسط میدان داخلی پیوند از هم جدا شوند.
میدان الکتریکی، الکترونها را به ناحیه n و حفرهها را به ناحیه p سوق میدهد. به این ترتیب تراکم بار منفی در ناحیه n و تراکم بار مثبت در ناحیه p زیاد میشود. این تراکم بار، به شکل ولتاژی در دو سر پیوند قابل اندازهگیری است. اگر دو سر پیوند با یک سیم، به یکدیگر اتصال کوتاه شود، الکترونهای اضافی ناحیهn، از طریق سیم به ناحیه p رفته و جریان اتصال کوتاهی را شکل میدهند. اگر به جای سیم از یک مصرفکننده استفاده شود، عبور جریان از مصرفکننده، به آن انرژی میدهد. به این ترتیب انرژی فوتونهای نور خورشید به انرژی الکتریکی تبدیل میشود.
هر چه میدان الکتریکی درون پیوند قویتر باشد، ولتاژ مدار باز بزرگتری بدست میآید. برای دست یافتن به یک میدان الکتریکی بزرگ، باید اختلاف تراز های فرمی دو ماده p و n از یکدیگر زیاد باشد. برای این منظور باید انرژی شکاف نیمه هادی بزرگ انتخاب شود؛ بنابراین ولتاژ مدار باز یک سلول خورشیدی با انرژی شکاف آن افزایش مییابد. اما افزایش انرژی شکاف سبب میشود، فوتونهای کمتری توانایی تولید زوج الکترون حفره داشته باشند و بنابراین جریان اتصال کوتاه کمتری نیز تولید شود؛ بنابراین افزایش انرژی شکاف، روی ولتاژ مدار باز و جریان اتصال کوتاه سلول دو اثر متفاوت دارد.
فناوری های ساخت سلول های خورشیدی
در حال حاضر دو فناوری در ساخت سلولهای خورشیدی غالب است: فناوری نسل اول و نسل دوم.
فناوری نسل اول بر پایه ویفر های سیلیکونی با ضخامت ۴۰۰–۳۰۰ میکرومتر است که ساختاری بلوری یا چند بلوری دارند که یا از بریدن شمش بدست میآیند یا از روش EFG و با کمک خاصیت مویینگی رشد داده میشوند.
فناوری نسل دوم یا تکنولوژی لایه نازک، براساس لایه نشانی نیمه هادی روی بسترهای شیشهای، فلزی یا پلیمری، در ضخامتهای ۵–۳ است.
هزینه مواد اولیه در تکنولوژی نسل دوم، پایینتر است و از آن گذشته، اندازه سلول تا ۱۰۰ برابر بزرگتر از اندازه سلول ساخته شده با تکنولوژی نسل اول است که مزیتی برای تولید انبوه آن محسوب میشود. در عوض بازدهی سلولهای نسل اول، که اغلب سلولهای بازار را تشکیل میدهند، به دلیل کیفیت بالاتر مواد، از بازدهی سلولهای نسل دوم بیشتر است. انتظار میرود اختلاف بازدهی میان سلولهای دو نسل با گذشت زمان کمتر شده و تکنولوژی نسل دوم جایگزین نسل اول شود.
در سال ۱۹۶۱، Shockley و Queisser با در نظر گرفتن یک سلول خورشیدی پیوندی به شکل یک جسم سیاه با دمای ۳۰۰ کلوین نشان دادند که بیشترین بازدهی یک سلول خورشیدی صرف نظر از نوع تکنولوژی بکار رفته در آن، ۳۰٪ است که در انرژی شکاف eV1.4 یعنی انرژی شکاف گالیم آرسناید بدست میآید. بنابراین بازدهی سلولهای خورشید نسل اول و دوم حتی در بهترین حالت نمیتواند از حوالی ۳۰٪ بیشتر شود. این در حالی است که حد کارنو برای تبدیل انرژی خورشیدی به انرژی الکتریکی ۹۵٪ است و این مقدار تقریباً سه برابر بیشتر از بازدهی نهایی سلولهای نسل اول و دوم است.
بنابراین دستیابی به سلولهایی با بازدهیهایی دو تا سه برابر بازدهیهای کنونی، امکانپذیر است. سلولهای خورشیدی که دارای چنین بازدهیهایی باشند، نسل سوم سلولهای خورشیدی نامیده میشوند. سلولهای متوالی، سلولهای خورشیدی چاه کوانتومی، سلولهای خورشیدی نقطه کوانتومی، سلولهای حامل داغ، نسل سوم سلولهای خورشیدی را تشکیل میدهند.
انواع سلول های خورشیدی
1- سلولهای خورشیدی مبتنی بر سیلیکون بلورین
رایجترین ماده توده برای سلول خورشیدی سیلیکون بلورین (c-Si) است ماده توده سیلیکون با توجه به نوع کریستال و اندازه کریستال به چندین بخش تقسیم میشود.
- سیلیکون مونو-کریستالی (c-Si)
- سیلیکون پلی-کریستالی (poly-Si) یا مولتی-کریستالی (mc-Si)
- سلول خورشیدی String Ribbon
2- سلولهای خورشیدی فیلم نازک
به بیان ساده فیلم نازک (Thin Film) یک روش تولید سلول خورشیدی است که طی آن یک یا چند لایه نازک از ماده فتوولتاییک روی یک بستر قرار میدهند. این سلولها تحت عنوان Thin Film Photo Voltaic Cells (TFPV) نیز شناخته میشوند. انواع مختلف سلولهای فیلم نازک را میتوان بر اساس مادهٔ فتوولتاییک مورد استفاده در آنها طبقهبندی نمود.
- Amorphous Silicon (a-Si)
- Cadmium Telluride (CdTe)
- Copper Indium Gallium Selenide (CIS/CIGS)
- Organic Photovoltaic Cells (OPC)
3- سلولهای خورشیدی مبتنی بر مواد آلی
این سلول در مقایسه با دیگر سلولهای خود بازدهی کمتری دارد و تنها به دلیل هزینه ساخت کمتر و قابلیت انعطافپذیری برای مصارف غیر صنعتی مناسب میباشد و قابلیت استفاده دارد.
4- فتوولتاییک یکپارچه ساختمان (BIPV) (Building Integrated PV)
فتوولتاییک یکپارچه ساختمان نسبت به انواع خاص تکنولوژیهای سلول خورشیدی، دارای چندین روش ساخت و انواع اشکال مختلف میباشد که میتواند بر پایه سیلیکون کریستالی یا فیلم نازک باشد.
BIPV میتواند شامل نما، سقف، پنجره، دیوار و بسیاری وسایل دیگر که با ماده فتوولتاییک ترکیب شدهاند باشد. در صورتی که پول بیشتری دارید و میخواهید فتوولتاییک را با عناصر مختلف خانه خود ترکیب کنید، به دنبال BIPV بروید. برای اغلب افراد این راه آسان، بسیار هزینه بر است.